	Mark Scheme							
Question	Key	Marks	Guidance					
1	D	1						
2	D	1						
3	С	1						
4	С	1						
5	В	1						
6	В	1						

C	Question		Answer	Marks	AO element	Guidance
7	(a)	(i)	Movement of an electron pair ✓	1	AO1.1	For electron pair, ALLOW lone pair OR bonding pair OR 2 electrons
	(a)	(ii)	→ / + H ₂ 0 Correct carbon skeleton ✓ '+' charge on correct carbon skeleton ✓	2	AO3.1 ×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE any other products
	(a)	(111)	 Heterolytic one (bonded) atom/O receives both/2 electrons ✓ Fission Breaking of a covalent bond OR breaking of C-O bond ✓ 	2	AO1.2 AO1.1	ALLOW 2 electrons go to one (bonded) atom/O IGNORE formation of ions/radicals For O atom, ALLOW species DO NOT ALLOW element OR molecule 'Bond breaking' is not sufficient (no reference to covalent)

PMT PhysicsAndMathsTutor.com

Qı	Question		Answer	Marks	AO element	Guidance		
						 go to C=O bond AND start from, OR be traced back to, any point across width of lone pair 		
						• OR start from '' charge of O ⁻		
						Curly arrow from C–Cl bond must start from, OR be traced back to, any part of C–Cl bond and go to Cl C - C C C C C C C C C C C C C C C C C C		
	(b)	(ii)	(OH ⁻) donates an electron pair/lone pair OR (OH ⁻ acts as a) nucleophile ✓ Total	1	AO1.2			

Question	Answer	Marks	AO element	Guidance
8	C	1	2.5	

Question	Answer	Marks	AO element	Guidance
(b) (i)	Ester Amide Amine Carboxylic acid 4 groups correct ✓✓✓ 3 groups correct ✓✓ 2 groups correct ✓	3	1.2×3	IGNORE amino acid ALLOW carboxyl IGNORE attempt to classify amide, e.g. secondary IGNORE formulae (question asks for names) IF > 4 functional groups are shown, • Count 4 groups max but incorrect groups first IGNORE aryl OR alkyl group
	Methanol 1 mark H ₃ C — OH \checkmark Amino Acids 3 marks HOOC NH ₂ HOOC $\stackrel{\uparrow}{NH_3}$ OR $\stackrel{\downarrow}{\bigvee}$ OR $\stackrel{\downarrow}{\bigvee}$ NH ₂ HOOC $\stackrel{\downarrow}{\vee}$ H ₃ \downarrow OR $\stackrel{\downarrow}{\bigvee}$ H ₃ \downarrow COOH $\stackrel{\downarrow}{\vee}$ COOH \downarrow \downarrow \downarrow COOH \downarrow \downarrow \downarrow COOH \downarrow	4	2.5×4	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW + charge on H of NH ₃ group, i.e.NH ₃ ⁺ If BOTH amino acids are shown with NH ₃ groups (without the + charge) OR as NH ₂ ⁺ groups, award 2 of the 3 marks for the amino acids If BOTH amino acids are shown as correctly balanced salts, e.g NH ₃ Cl, all marks can be awarded.
	Both amino acids shown with $NH_3^+ \checkmark$			

PhysicsAndMathsTutor.com

Question	Answer	Marks	AO element	Guidance
Question (iii)	AnswerFIRST CHECK ANSWER ON THE ANSWER LINE If answer = 22.4 OR 22 OR 23 award 3 marksn(aspartame) in 1 can = $0.167 / 294 = 5.68 \times 10^{-4}$ (mol) n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75 = 0.01275$ (mol) number of cans = $0.01275 / 5.68 \times 10^{-4} = 22.4 \checkmark$	Marks 3	AO element 2.2×3	GuidanceGuidanceIf there is an alternative answer, apply ECF and look for alternative methodsAlternative methodsAlternative methodsn(aspartame) in 1 can = $0.167 / 294$ = 5.68×10^{-4} (mol) \checkmark n(aspartame) per kg = $5.68 \times 10^{-4} / 75$ = 7.57×10^{-6} (mol) \checkmark number of cans = $1.7 \times 10^{-4} / 7.57 \times 10^{-6}$ = $22.4\checkmark$ OR
				n(aspartame) limit per day = $1.7 \times 10^{-4} \times 75$ =0.01275 (mol) \checkmark mass(aspartame) limit per day =0.01275 x 294 = 3.7485 (g) \checkmark number of cans = $3.7485 / 0.167$ = $22.4 \checkmark$